Verification of Onsager's reciprocal relations for evaporation and condensation using non-equilibrium molecular dynamics.
نویسندگان
چکیده
Non-equilibrium molecular dynamic (NEMD) simulations have been used to study heat and mass transfer across a vapor-liquid interface for a one-component system using a Lennard-Jones spline potential. It was confirmed that the relation between the surface tension and the surface temperature in the non-equilibrium system was the same as in equilibrium (local equilibrium). Interfacial transfer coefficients were evaluated for the surface, which expressed the heat and mass fluxes in temperature and chemical potential differences across the interfacial region (film). In this analysis it was assumed that the Onsager reciprocal relations were valid. In this paper we extend the number of simulations such that we can calculate all four interface film transfer coefficients along the whole liquid-vapor coexistence curve. We do this analysis both for the case where we use the measurable heat flux on the vapor side and for the case where we use the measurable heat flux on the liquid side. The most important result we found is that the coupling coefficients within the accuracy of the calculation are equal. This is the first verification of the validity of the Onsager relations for transport through a surface using molecular dynamics. The interfacial film transfer coefficients are found to be a function of the surface temperature alone. New expressions are given for the kinetic theory values of these coefficients which only depend on the surface temperature. The NEMD values were found to be in good agreement with these expressions.
منابع مشابه
Integral relations, a simplified method to find interfacial resistivities for heat and mass transfer
Integral relations were used to predict interface film transfer coefficients for evaporation and condensation. According to these, all coefficients can be calculated for one-component systems, using the thermal resistivity and the enthalpy profile through the interface. The expressions were verified in earlier work using non-equilibrium molecular dynamics simulations for argon-like particles, w...
متن کاملOnsager's reciprocal relations in electrolyte solutions. I. Sedimentation and electroacoustics.
In the framework of irreversible thermodynamics, we show that the sedimentation current in electrolyte solutions is mathematically equivalent to the low frequency limit of the ionic vibration current, appearing in the presence of an acoustic wave. This non-trivial result is obtained thanks to a careful choice of the reference frame used to express the mass fluxes in the context of electroacoust...
متن کاملMolecular Dynamics Study of Condensation/Evaporation and Velocity Distribution of N-Dodecane at Liquid-Vapour Phase Equilibria*
Some recent results of molecular dynamics simulations of the condensation/evaporation and velocity distribution of n-dodecane (C12H26), the closest approximation to Diesel fuel, at a liquid-vapour interface in equilibrium state are briefly described. It is shown that molecules at the liquid surface need to gain relatively large translational energy to evaporate. Vapour molecules with large tran...
متن کاملRevisiting kinetic boundary conditions at the surface of fuel droplet hydrocarbons: An atomistic computational fluid dynamics simulation
The role of boundary conditions at the interface for both Boltzmann equation and the set of Navier-Stokes equations have been suggested to be important for studying of multiphase flows such as evaporation/condensation process which doesn't always obey the equilibrium conditions. Here we present aspects of transition-state theory (TST) alongside with kinetic gas theory (KGT) relevant to the stud...
متن کاملA More Accurate Prediction of Liquid Evaporation Flux
In this work, a more accurate prediction of liquid evaporation flux has been achieved. The statistical rate theory approach, which is recently introduced by Ward and Fang and exact estimation of vapor pressure in the layer adjacent to the liquid–vapor interface have been used for prediction of this flux. Firstly, the existence of an equilibrium layer adjacent to the liquid-vapor interface ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of colloid and interface science
دوره 299 1 شماره
صفحات -
تاریخ انتشار 2006